PIXABAY

El Grupo de Sistemas Fotovoltaicos del IES-UPM analiza dos aspectos estratégicos: la calidad en grandes programas de electrificación rural descentralizada y la fiabilidad de los sistemas de bombeo fotovoltaico.

Con aproximadamente 770 gigavatios (GW) de potencia fotovoltaica instalada en el mundo al concluir 2020, la mayoría concentrada en grandes plantas solares para la generación de electricidad, la electrificación rural fotovoltaica ocupa hoy una actividad minoritaria dentro del sector. Sin embargo, según datos del Banco Mundial, todavía hay 770 millones de personas en todo el mundo que siguen sin tener acceso a la electricidad, y la fotovoltaica es una de las tecnologías que está contribuyendo a reducir esta carencia.

Sistemas Fotovoltaicos

La trayectoria del Grupo de Sistemas Fotovoltaicos (GSF), del Instituto de Energía Solar (IES) de la Universidad Politécnica de Madrid (UPM), en la electrificación rural fotovoltaica ha estado marcada por la búsqueda de la calidad de los sistemas solares.

Este principio tiene mucha más relevancia cuando de lo que se habla es de aplicaciones en el ámbito de lo descentralizado, donde la escasez de infraestructuras, su aislamiento y difícil accesibilidad, junto con una baja densidad de población con limitados recursos económicos, imposibilita un servicio de operación y mantenimiento que permita dar una vida útil razonable a estos sistemas.

Durante cuatro décadas, el IES ha sido pionero en el desarrollo de estándares y protocolos de control de calidad en numerosos programas de electrificación rural llevados a cabo tanto en Iberoamérica como en África.

Desde 2010, la línea de investigación en electrificación rural del GSF ha puesto el foco en 2 temas estratégicos: la calidad en grandes programas de electrificación rural descentralizada y la fiabilidad de los sistemas de bombeo fotovoltaico.

Grandes programas de electrificación rural descentralizada

En el caso de la calidad en grandes programas de electrificación rural descentralizada, los estudios realizados por el Grupo de Sistemas Fotovoltaicos (GSF) han puesto de manifiesto la fragilidad de estos programas llevados a cabo en el mundo hasta la primera década del siglo XXI, a causa de los altos costes de operación y mantenimiento, generando en las empresas implicadas graves situaciones de insolvencia.

A las dificultades que presenta lo descentralizado hay que añadir que, por lo general, cuando se aborda un programa de estas características, se parte desde el desconocimiento de los datos reales de fiabilidad de los componentes que forman los sistemas (reguladores de carga, inversores, luminarias y, principalmente, baterías).

Conocer las tasas de fallos de los equipos, sus tiempos medios hasta el fallo y su vida útil en ambientes descentralizados debe ser la herramienta básica con la que poder diseñar estructuras de mantenimiento que resulten eficientes y rentables.

Los resultados obtenidos del estudio del Programa de Electrificación Rural Global de Marruecos (2005-2010), con más de 13.000 sistemas solares domiciliarios, mostraron que la vida útil media de las baterías no llegaba a un año y que, en dicho programa, se subestimaron los costes de operación y mantenimiento en un 20% (por lo fue necesaria una estructura de mantenimiento mucho mayor de lo previsto), lo que llevó a la empresa adjudicataria a abandonar el proyecto.

Modelos matemáticos de optimización de sistemas fotovoltaicos

Utilizando modelos matemáticos de optimización, es posible diseñar estructuras de mantenimiento capaces de asegurar la vida útil de los sistemas. Estas herramientas de modelización ayudan a decidir, entre otros, las ubicaciones de los centros de mantenimiento a partir de la distribución geográfica de los sistemas y sus accesos, la cantidad de técnicos y vehículos necesarios, o las previsiones de repuestos que se precisan de acuerdo a los datos de fiabilidad de los dispositivos.

“En el GSF desarrollamos una herramienta capaz de diseñar estructuras de mantenimiento y lo aplicamos al caso del programa marroquí, consiguiendo optimizar dichas estructuras hasta tal punto de lograr revertir en algunas zonas la falta de rentabilidad del programa en un 20%”, señala Luis Miguel Carrasco, que lidera la línea de investigación sobre electrificación rural fotovoltaica en el Grupo de Sistemas Fotovoltaicos (GSF).

Cambio de paradigma

La última década se ha caracterizado por un cambio de paradigma con en el que se han abandonado los modelos clásicos de electrificación rural fotovoltaica, como el fee for service, y se ha optado, en general, por implantar dos nuevos modelos.

Uno de ellos se refiere a la venta directa de sistemas solares domiciliarios y de lo que se conoce como pico-systems (pequeños sistemas compactos plug&play de menos de 10Wp con luminarias de led y cargador USB para móviles). El otro modelo consiste en desarrollar minigrids en núcleos suficientemente densos de población con modelos PPA de venta de energía a los usuarios.

En este nuevo escenario, el GSF participa en África del Oeste con ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) en el desarrollo de un nuevo standard para sistemas solares domiciliarios para el África occidental (ECOWAS – Economic Community of West African States) con el objetivo de que los sistemas que se encuentran en el mercado estén certificados para asegurar su calidad.

“En un trabajo previo, y de acuerdo a esta línea de trabajo, en el IES ya se habían publicado las especificaciones técnicas y los procedimientos de control de calidad de luminarias de led para sistemas fotovoltaicos domiciliarios ante la previsión de su aplicación a gran escala”, explica Luis Narvarte, investigador principal del Grupo de Sistemas Fotovoltaicos (GSF).

Fiabilidad de sistemas de bombeo fotovoltaico

Por otro lado, en 2013, el Grupo de Sistemas Fotovoltaicos (GSF) abrió una nueva línea de investigación con el bombeo fotovoltaico de alta potencia para aplicaciones agrícolas, materializado en el proyecto MASLOWATEN del programa Horizonte 2020 (H2020) de la Comisión Europea.

Con este proyecto se ha logrado aumentar la potencia de los sistemas de riego fotovoltaico a la necesaria para satisfacer las necesidades de los regantes, resolver los problemas asociados a la intermitencia de potencia sin uso de baterías, e integrar el sistema solar en el de riego preexistente mediante diseños innovadores, permitiendo el máximo aprovechamiento fotovoltaico.

Previamente se llevó a cabo en Marruecos un proyecto piloto, financiado por la UPM y la Agencia Española de Cooperación Internacional (AECID), de un sistema de riego fotovoltaico descentralizado con el que se desarrollaron los algoritmos de control necesarios para dar este salto tecnológico y empleando para el generador fotovoltaico un seguidor autónomo de eje horizontal Norte-Sur. Este proyecto fue clave en el desarrollo de la tecnología de riego fotovoltaico para su posterior introducción en el mercado gracias a MASLOWATEN.

Consolidada ya la tecnología de los sistemas fotovoltaicos de riego de alta potencia, en 2020 el GSF coordina el proyecto SOLAQUA, también del programa H2020, cuyo objetivo es el de extender el mercado del riego solar combinando la tecnología fotovoltaica e hidráulica con el riego de alta eficiencia.

En paralelo a estos proyectos europeos, el GSF está abriendo una nueva línea de trabajo que trate de integrar los sistemas fotovoltaicos de riego de alta potencia en entornos descentralizados, a través del desarrollo de sistemas de riego de muy alta fiabilidad, minimizando al máximo las tasas de fallo y permitiendo el control remoto del sistema.

Fuente: UPM,

Artículo de referencia: https://www.upm.es/?id=8b283bdc331a8710VgnVCM10000009c7648a____&prefmt=articulo&fmt=detail,



0 0 votes
Valoración
Suscribir
Notificar de
guest

0 Comentarios
Inline Feedbacks
View all comments